Smooth-AUC: Smoothing the Path Towards Rank-based CTR Prediction

Shuang Tang, Fangyuan Luo, Jun Wu Beijing Jiaotong University, Beijing 100044, China

Click-Through Rate Prediction

➤ Click-through rate (CTR) prediction is a crucial task in many recommendation applications.

For most existing DNNs-based CTR models, BCE is the common learning objective and AUC is the widely used metric

Measuring CTR Estimation Performance

- The is an inconsistency between BCE loss and AUC
- ➤ Our Goal Optimize a smoothed version of the AUC Metric

$$L_{BCE}(u) = \sum_{i} s_{ui} log(y_{ui}) - (1 - s_{ui}) log(1 - y_{ui})$$

$$AUC(u) = \frac{\sum_{i \in P_u} \sum_{j \in N_u} \mathbb{I}(s_{ui} > s_{uj})}{|Pu| \times |N_u|}$$

 s_{ui} and y_{ui} : the preference score and ground truth by user u on item i. P_u and N_u : the positive and negative items.

Smoothing the Area Under the ROC Curve

> AUC loss includes a non-differentiable Heaviside function

$$\mathcal{L}_{AUC} \propto H(x) = \begin{cases} 0 & \text{if } x < 0 \\ 1 & \text{if } x \ge 0 \end{cases}$$

We replace the Heaviside function H(x) by a sigmoid function $S(x; \tau)$

$$\mathcal{L}_{SAUC} \propto \mathcal{S}(x;\tau) = \frac{1}{1 + e^{-\frac{x}{\tau}}}$$

Smooth-AUC

> Smooth-AUC optimizes a ranking metric

$$L_{SAUC} = -\frac{1}{|U|} \sum_{u=1}^{|U|} \left[\frac{1}{|Pu| \times |Nu|} \sum_{i=1}^{|Pu|} \sum_{j=1}^{|Nu|} \mathcal{S}(D_{uij}; \tau) \right]$$

➤ Compared with BCE loss, Smooth-AUC loss is closer to the true AUC loss

➤ Smooth-AUC is a plug-and-play objective that can be utilized by any DNNs-based CTR model

Smooth-AUC: Smoothing the Path Towards Rank-based CTR Prediction

Experiments

> Datasets

- CiteULike-a¹ papers management domain
- YiDian² news recommendation domain

	#Users	#Items	# Interactions	Density
CiteUlike-a	5,139	16,980	200,866	0.23%
YiDian	1,029,717	347,466	81,721,133	0.02%

➤ Backbone models

- DeepFM^[1]
- FiBiNET^[2]
- ONN^[3]

> Metrics

- AUC
- MRR
- Precision

- 1: https://citeulike.org/
- 2: https://tech.yidianzixun.com/competition/#/
- [1]: DeepFM: A Factorization-Machine based Neural Network for CTR Prediction. In IJCAI 2017.
- [2]: FiBiNET: combining feature importance and bilinear feature interaction for click-through rate prediction. RecSys 2019.
- [3]: Operation-aware Neural Networks for user response prediction. Neural Networks 2020.

Experiments

	CiteULike-a			YiDian			
	AUC	MRR	P@10	AUC	MRR	P@10	
DeepFM	0.861(+3.60%)	0.248(+36.69%)	0.539(+27.83%)	0.600(+6.17%)	0.076(+42.11%)	0.166 (+14.46%)	
DeepFM-BPROPT	0.887(+0.56%)	0.304(+11.51%)	0.623(+10.59%)	0.626(+1.76%)	0.089(+21.35%)	0.177(+7.34%)	
★ DeepFM-SAUC	0.892	0.339	0.689	0.637	0.108	0.190	
FiBiNET	0.875(+1.60%)	0.262(+32.44%)	0.585(+18.12%)	0.621(+2.58%)	0.087(+12.64%)	0.183(+4.92%)	
FiBiNET-BPROPT	0.880(+1.02%)	0.316(+9.81%)	0.625(+10.56%)	0.631(+0.95%)	0.093(+5.38%)	0.187(+2.67%)	
★ FiBiNET-SAUC	0.889	0.347	0.691	0.637	0.098	0.192	
ONN	0.877(+1.60%)	0.264(+32.95%)	0.583(+18.35%)	0.621(+2.25%)	0.091(+13.19%)	0.188(+5.85%)	
ONN-BPROPT	0.886(+0.56%)	0.334(+5.09%)	0.645(+6.98%)	0.632(+0.47%)	0.095(+8.42%)	0.195(+2.05%)	
★ ONN-SAUC	0.891	0.351	0.690	0.635	0.103	0.199	

- * our method
- ➤ BPROPT & SAUC> BCE: attributed to the benefit of considering relative order between positive items and negative items.
- > SAUC > BPROPT: SAUC not only considers the relative order of item pairs, but also optimizes the metric used for evaluation.

Thank you!

