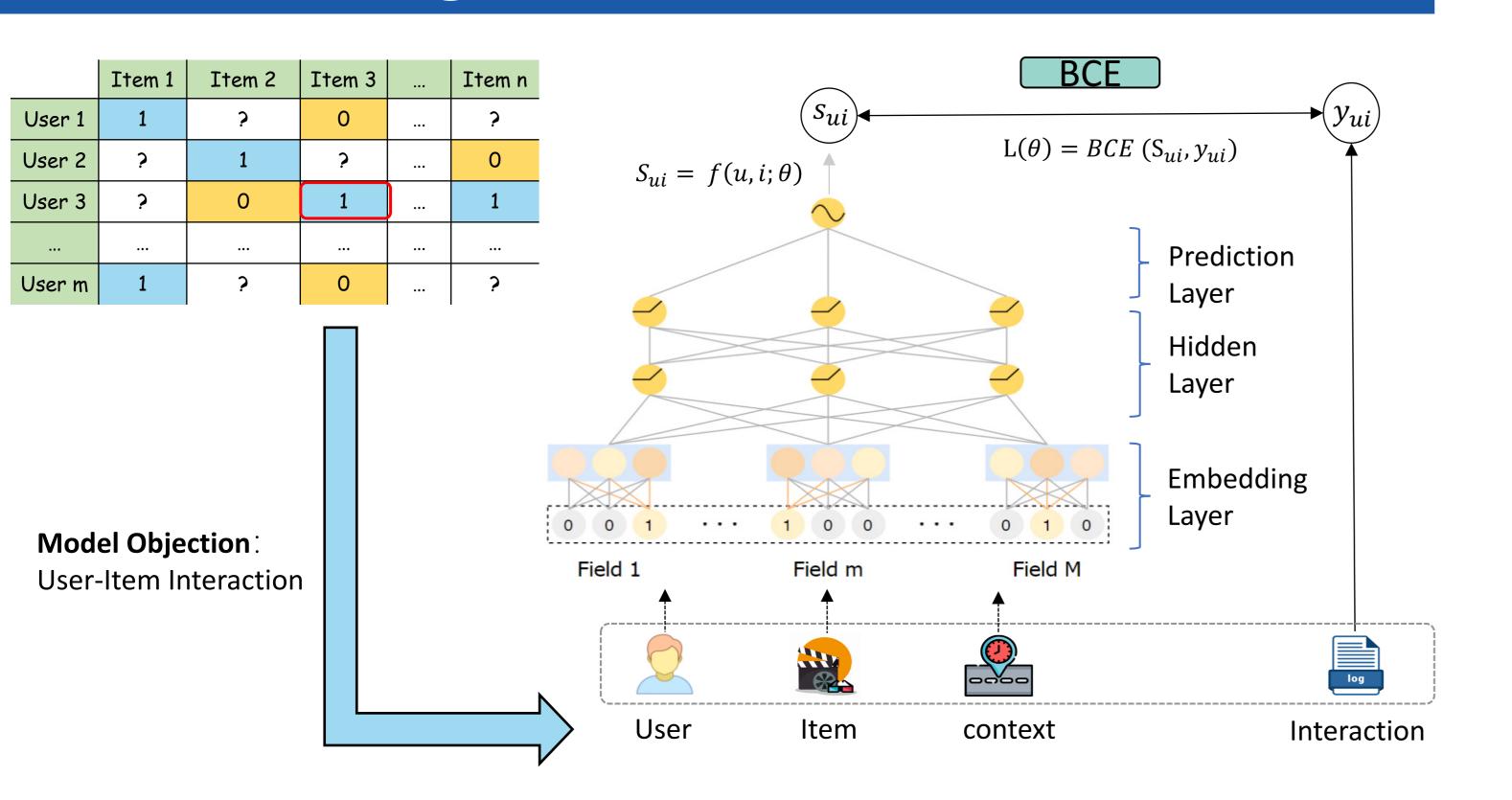
# Smooth-AUC: Smoothing the Path Towards Rank-based CTR Prediction (short paper)

Shuang Tang, Fangyuan Luo, Jun Wu Beijing Jiaotong University Beijing 100044, China

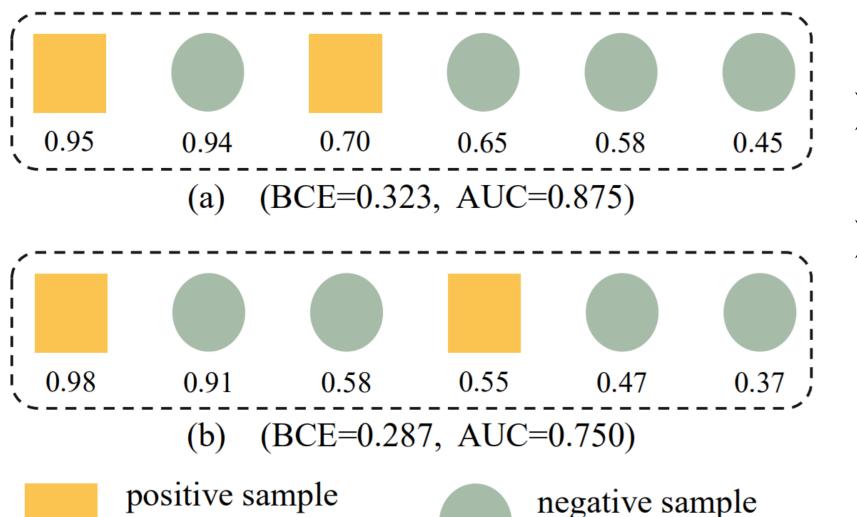


### Click-Through Rate Estimation



- Click-through rate (CTR) prediction is a crucial task in many recommendation applications.
- For Most existing DNNs-based CTR models, BCE is the common loss, AUC is the common metric.

#### Measuring CTR Estimation Performance



0.91

- The is an inconsistency between BCE loss and AUC.
- ➤Our Goal Optimize a smoothed version of the AUC Metric.

$$L_{BCE} = s_{ui}log(y_{ui}) - (1 - s_{ui})log(1 - y_{ui})$$

$$AUC(u) = \frac{\sum_{i \in P_u} \sum_{j \in N_u} \mathbb{I}(s_{ui} > s_{uj})}{|Pu| \times |N_u|}$$

 $s_{ui}$  and  $y_{ui}$ : the preference score and ground truth by user u on item i.  $P_u$  and  $N_u$ : the positive and negative items.

with 0.91 score

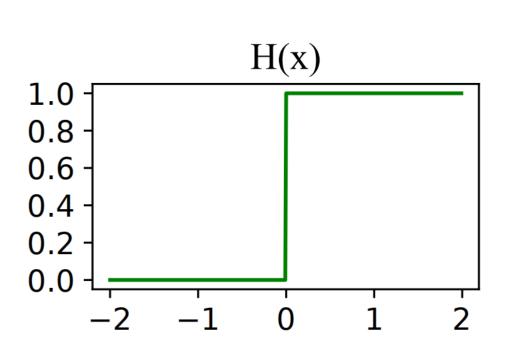
### Smoothing the Area Under the ROC Curve

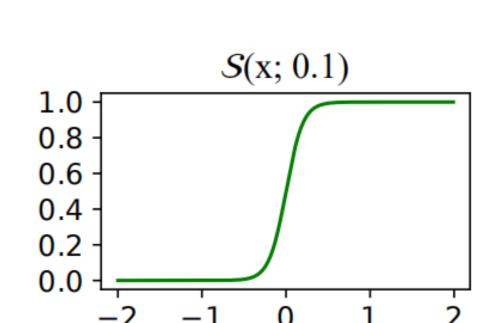
AUC loss includes a non-differentiable Heaviside function.

$$\mathcal{L}_{AUC} \propto H(x) = \begin{cases} 0 & \text{if } x < 0 \\ 1 & \text{if } x \ge 0 \end{cases}$$

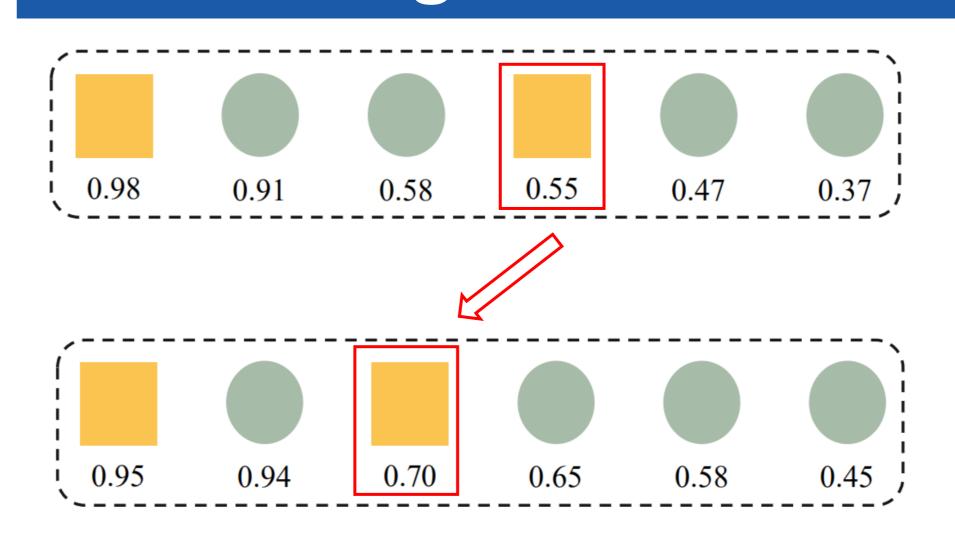
We replace the Heaviside function by a sigmoid function  $S(x; \tau)$ 

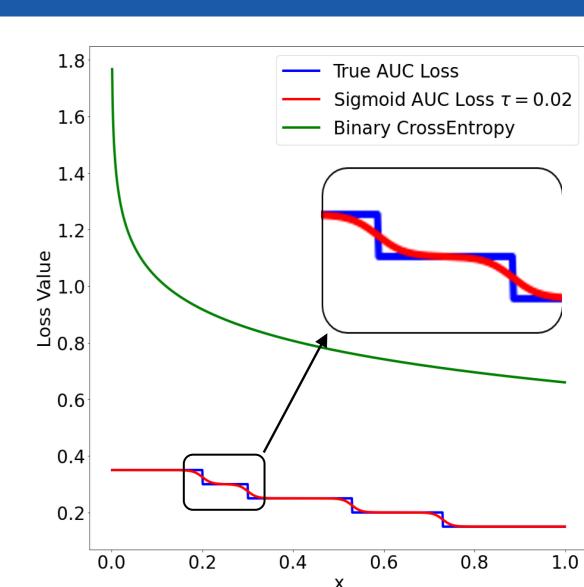
$$\mathcal{L}_{SAUC} \propto \mathcal{S}(x;\tau) = \frac{1}{1 + e^{-\frac{x}{2}}}$$





# Smoothing-AUC





➤ Smooth-AUC optimizes a ranking metric

$$L_{SAUC} = -\frac{1}{|U|} \sum_{u=1}^{|U|} \left[ \frac{1}{|Pu| \times |Nu|} \sum_{i=1}^{|Pu|} \sum_{j=1}^{|Nu|} \mathcal{S}(D_{uij}; \tau) \right]$$

➤ Compared with BCE loss, Smooth-AUC loss is closer to true AUC loss ➤ Smooth-AUC is a plug-and-play objective that can be utilized by any DNNs-based CTR model

## Experiments

with 0.98 score

0.98

| - |                | CiteULike-a   |                |                | YiDian        |                |                 |
|---|----------------|---------------|----------------|----------------|---------------|----------------|-----------------|
|   |                | AUC           | MRR            | P@10           | AUC           | MRR            | P@10            |
| * | DeepFM         | 0.861(+3.60%) | 0.248(+36.69%) | 0.539(+27.83%) | 0.600(+6.17%) | 0.076(+42.11%) | 0.166 (+14.46%) |
|   | DeepFM-BPROPT  | 0.887(+0.56%) | 0.304(+11.51%) | 0.623(+10.59%) | 0.626(+1.76%) | 0.089(+21.35%) | 0.177(+7.34%)   |
|   | DeepFM-SAUC    | 0.892         | 0.339          | 0.689          | 0.637         | 0.108          | 0.190           |
| - | FiBiNET        | 0.875(+1.60%) | 0.262(+32.44%) | 0.585(+18.12%) | 0.621(+2.58%) | 0.087(+12.64%) | 0.183(+4.92%)   |
| * | FiBiNET-BPROPT | 0.880(+1.02%) | 0.316(+9.81%)  | 0.625(+10.56%) | 0.631(+0.95%) | 0.093(+5.38%)  | 0.187(+2.67%)   |
|   | FiBiNET-SAUC   | 0.889         | 0.347          | 0.691          | 0.637         | 0.098          | 0.192           |
|   | ONN            | 0.877(+1.60%) | 0.264(+32.95%) | 0.583(+18.35%) | 0.621(+2.25%) | 0.091(+13.19%) | 0.188(+5.85%)   |
| * | ONN-BPROPT     | 0.886(+0.56%) | 0.334(+5.09%)  | 0.645(+6.98%)  | 0.632(+0.47%) | 0.095(+8.42%)  | 0.195(+2.05%)   |
|   | ONN-SAUC       | 0.891         | 0.351          | 0.690          | 0.635         | 0.103          | 0.199           |

\* our method

- ➤ BPROPT & SAUC> BCE: attributed to the benefit of considering relative order between positive items and negative items.
- >SAUC > BPROPT: SAUC not only considers the relative order of item pairs, but also optimizes the metric used for evaluation.
- parameter-sensitive: it would be crucial to keep a trade-off between AUC approximation and an enough non-zero interval.

