Smooth-AUC: Smoothing the Path Towards Rank-based CTR Prediction (short paper)

Shuang Tang, Fangyuan Luo, Jun Wu Beijing Jiaotong University Beijing 100044, China

Click-Through Rate Estimation

- Click-through rate (CTR) prediction is a crucial task in many recommendation applications.
- For Most existing DNNs-based CTR models, BCE is the common loss, AUC is the common metric.

Measuring CTR Estimation Performance

0.91

- The is an inconsistency between BCE loss and AUC.
- ➤Our Goal Optimize a smoothed version of the AUC Metric.

$$L_{BCE} = s_{ui}log(y_{ui}) - (1 - s_{ui})log(1 - y_{ui})$$

$$AUC(u) = \frac{\sum_{i \in P_u} \sum_{j \in N_u} \mathbb{I}(s_{ui} > s_{uj})}{|Pu| \times |N_u|}$$

 s_{ui} and y_{ui} : the preference score and ground truth by user u on item i. P_u and N_u : the positive and negative items.

with 0.91 score

Smoothing the Area Under the ROC Curve

AUC loss includes a non-differentiable Heaviside function.

$$\mathcal{L}_{AUC} \propto H(x) = \begin{cases} 0 & \text{if } x < 0 \\ 1 & \text{if } x \ge 0 \end{cases}$$

We replace the Heaviside function by a sigmoid function $S(x; \tau)$

$$\mathcal{L}_{SAUC} \propto \mathcal{S}(x;\tau) = \frac{1}{1 + e^{-\frac{x}{2}}}$$

Smoothing-AUC

➤ Smooth-AUC optimizes a ranking metric

$$L_{SAUC} = -\frac{1}{|U|} \sum_{u=1}^{|U|} \left[\frac{1}{|Pu| \times |Nu|} \sum_{i=1}^{|Pu|} \sum_{j=1}^{|Nu|} \mathcal{S}(D_{uij}; \tau) \right]$$

➤ Compared with BCE loss, Smooth-AUC loss is closer to true AUC loss ➤ Smooth-AUC is a plug-and-play objective that can be utilized by any DNNs-based CTR model

Experiments

with 0.98 score

0.98

-		CiteULike-a			YiDian		
		AUC	MRR	P@10	AUC	MRR	P@10
*	DeepFM	0.861(+3.60%)	0.248(+36.69%)	0.539(+27.83%)	0.600(+6.17%)	0.076(+42.11%)	0.166 (+14.46%)
	DeepFM-BPROPT	0.887(+0.56%)	0.304(+11.51%)	0.623(+10.59%)	0.626(+1.76%)	0.089(+21.35%)	0.177(+7.34%)
	DeepFM-SAUC	0.892	0.339	0.689	0.637	0.108	0.190
-	FiBiNET	0.875(+1.60%)	0.262(+32.44%)	0.585(+18.12%)	0.621(+2.58%)	0.087(+12.64%)	0.183(+4.92%)
*	FiBiNET-BPROPT	0.880(+1.02%)	0.316(+9.81%)	0.625(+10.56%)	0.631(+0.95%)	0.093(+5.38%)	0.187(+2.67%)
	FiBiNET-SAUC	0.889	0.347	0.691	0.637	0.098	0.192
	ONN	0.877(+1.60%)	0.264(+32.95%)	0.583(+18.35%)	0.621(+2.25%)	0.091(+13.19%)	0.188(+5.85%)
*	ONN-BPROPT	0.886(+0.56%)	0.334(+5.09%)	0.645(+6.98%)	0.632(+0.47%)	0.095(+8.42%)	0.195(+2.05%)
	ONN-SAUC	0.891	0.351	0.690	0.635	0.103	0.199

* our method

- ➤ BPROPT & SAUC> BCE: attributed to the benefit of considering relative order between positive items and negative items.
- >SAUC > BPROPT: SAUC not only considers the relative order of item pairs, but also optimizes the metric used for evaluation.
- parameter-sensitive: it would be crucial to keep a trade-off between AUC approximation and an enough non-zero interval.

