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Motivation

• Users with high Upop tend to 
give higher prediction scores 
to items with higher Ipop.

• Users with low Upop is less 
influenced by Ipop.

Figure 1: A case study of MF on Yahoo! R3 dataset



User-Dependent Learning to Debias for Recommendation

3

Motivation

• Users with high Upop tend to 
give higher prediction scores 
to items with higher Ipop.

• Users with low Upop is less 
influenced by Ipop.

Figure 1: A case study of MF on Yahoo! R3 dataset

It is sub-optimal to treat all users 
equally and necessary to take into 
account users’ popularity 
sensitivity, which has not been
studied in unbiased recommender 
learning.
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Related Work

Existing methods for addressing popularity bias mainly fall into four lines.

• Inverse Propensity Scoring (IPS) [1-5]

• Causal Intervention [6-8]

• Regularization constraints [9-10]

• Reranking [11-12]
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Method

Ø Propensity Estimation.

item popularity:

users’ popularity sensitivity: 

Ø Unbiased Learning Objective.
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Ø Unbiased Learning Objective.

Ø Unbiasedness Analysis.
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Experiments

ØDatasets

ØBaselines

ØMetrics

MF, MF-IPS [ICML’16], InterD [SIGIR’22], KD_Label [SIGIR’20], DR [ICML’19]

NDCG, Precision, Recall, AUC
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Experiments

• UDIPS-based methods 
consistently outperforms 
existing models on UB-Te
and NB-Te across two 
datasets.

• Compared with MF, all 
debiased model perform 
better on UB-Te but show 
inferior performance on the 
NB-Te except UDIPS-based 
methods and InterD, which 
illustrates the most debiased 
methods improve the 
debiased performance with 
the sacrifice of biased 
performance.
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Experiments

Ø Comparison in terms of popular sensitive/insensitive users.

• The recommendation performance of PI users and PS 
users are both boosted.

• The performance gain from PS users is larger than 
that from PI users. It indicates that our proposed 
method is more effective in handling under-debiasing 
of PS users compared with the over-debiasing of PI 
users.

Ø Impact of Hyper-Parameter.
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