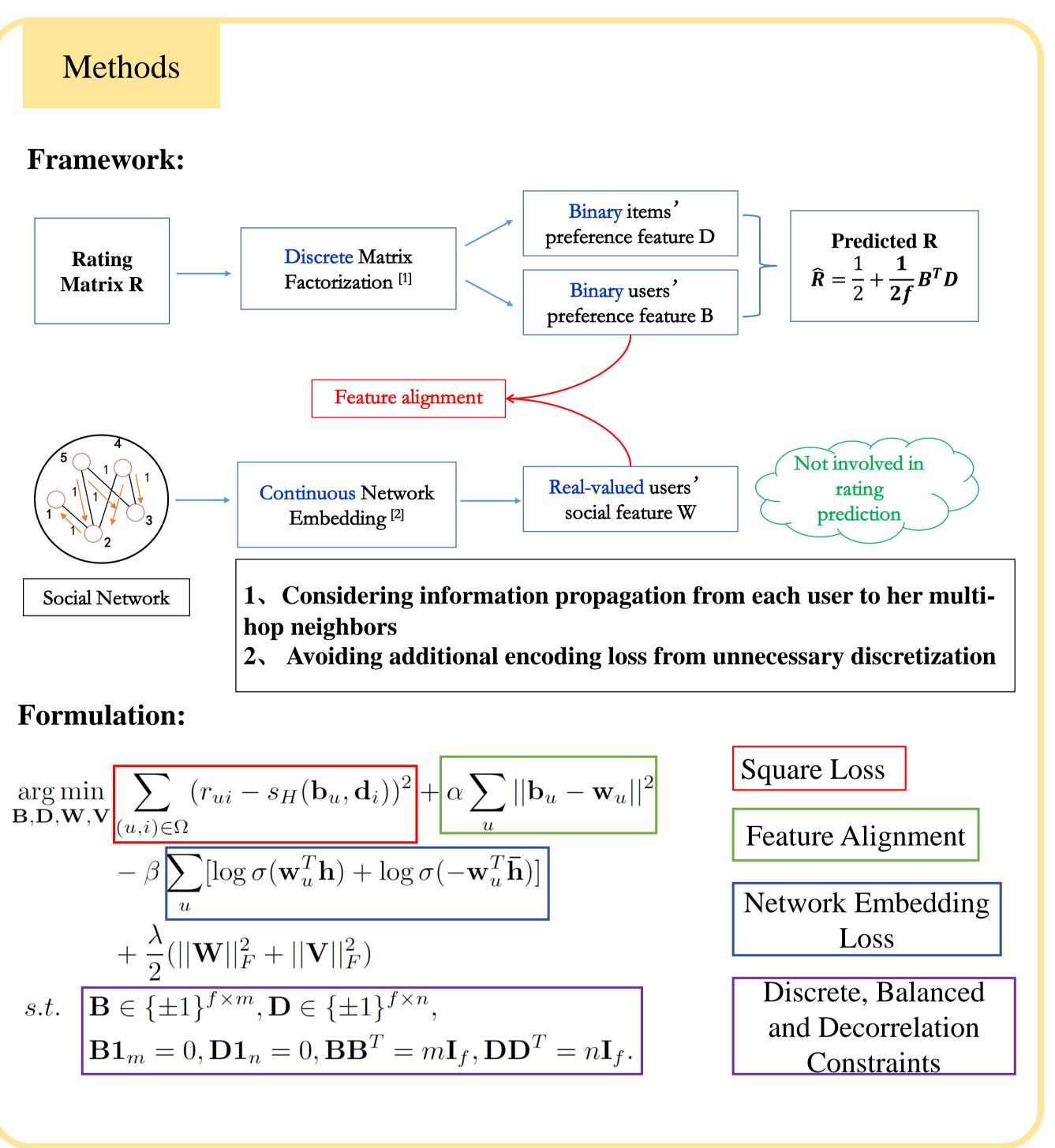

Semi-Discrete Social Recommendation (Student Abstract)

Fangyuan Luo¹, Jun Wu¹, HaishuaiWang² ¹Beijing Jiaotong University, Beijing ²Harvard University, Cambridge



Contributions

- 1. We combines MF model with NE model partially under the discrete constraints, which is essential in modeling the influence propagation process of users' interests over social network, as well as avoiding the extra encoding loss caused by the discretization on social embedding.
- 2. We develop an efficient alternating optimization algorithm to solve the proposed mixed-integer programming problem, which can yield informative and compact hash codes.

References

- [1] Zhang, H.; Shen, F.; Liu, W.; He, X.; Luan, H.; and Chua, T. S. 2016. Discrete Collaborative Filtering. In SIGIR, 325–334.
- [2] Perozzi, B.; Alrfou, R.; and Skiena, S. 2014. DeepWalk: online learning of social representations. In KDD, 701–710.
- [3] F. Shen, C. Shen, W. Liu, H. T. Shen, Supervised discrete hashing, in: CVPR, 2015, pp. 37-45.

Optimization

NP-Hard \Longrightarrow Soften B and D: $\begin{vmatrix} \mathbf{X} \in \mathcal{B} = \{\mathbf{X} \in \mathbb{R}^{f \times m} | \mathbf{X} \mathbf{1} = 0, \mathbf{X} \mathbf{X}^{\mathbf{T}} = m \mathbf{I} \} \\ \mathbf{Y} \in \mathcal{D} = \{\mathbf{Y} \in \mathbb{R}^{f \times n} | \mathbf{Y} \mathbf{1} = 0, \mathbf{Y} \mathbf{Y}^{\mathbf{T}} = n \mathbf{I} \}$

$$\underset{\mathbf{B}, \mathbf{D}, \mathbf{W}, \mathbf{V}}{\operatorname{arg\,min}} \sum_{(u,i) \in \Omega} (r_{ui} - s_H(\mathbf{b}_u, \mathbf{d}_i))^2 - \alpha \sum_{u} [\log \sigma(\mathbf{w}_u^T \mathbf{h}) + \log \sigma(-\mathbf{w}_u^T \bar{\mathbf{h}})]$$

$$+ \beta \sum_{u} ||\mathbf{b}||_{-\mathbf{w}} ||^2 + \frac{\lambda_w}{||\mathbf{W}||^2} + \frac{\lambda_v}{||\mathbf{W}||^2}$$

$$+\beta \sum_{u} ||\mathbf{b}_{u} - \mathbf{w}_{u}||^{2} + \frac{\lambda_{w}}{2} ||\mathbf{W}||_{F}^{2} + \frac{\lambda_{v}}{2} ||\mathbf{V}||_{F}^{2}$$

$$s.t. \quad \mathbf{B} \in \{\pm 1\}^{f \times m}, \mathbf{D} \in \{\pm 1\}^{f \times n},$$

 $+\lambda_B d^2(\mathbf{B},\mathcal{B}) + \lambda_D d^2(\mathbf{D},\mathcal{D})$

B-subproblem:

$$\underset{\mathbf{b}_{u} \in \{\pm 1\}^{f}}{\operatorname{arg \, min}} \sum_{i \in \Omega_{u}} \frac{1}{4f^{2}} (\mathbf{d}_{i}^{T} \mathbf{b}_{u})^{2} - \frac{1}{f} (r_{ui} - \frac{1}{2}) \mathbf{d}_{i}^{T} \mathbf{b}_{u} - 2\beta \mathbf{w}_{u}^{T} \mathbf{b}_{u} - 2\lambda_{B} \mathbf{x}_{u}^{T} \mathbf{b}_{u}$$

$$\underset{\mathbf{b}_{uk} \in \{\pm 1\}}{\operatorname{arg \, min}} \hat{b}_{uk} b_{uk} \quad \hat{b}_{uk} = \sum_{i \in \Omega_{u}} \frac{1}{f} (r_{ui} - \frac{1}{2} - \frac{1}{2f} \mathbf{d}_{i}^{T} \mathbf{b}_{u}) d_{ik} + \frac{1}{2f^{2}} b_{uk} + 2\beta w_{uk} + 2\lambda_{B} x_{uk}$$

$$b_{uk} \in \{\pm 1\}$$

D-subproblem:

 $d_{ik} \in \{\pm 1\}$

$$\underset{\mathbf{d}_{i} \in \{\pm 1\}^{f}}{\operatorname{arg\,min}} \sum_{u \in \Omega_{i}} \frac{1}{4f^{2}} (\mathbf{b}_{u}^{T} \mathbf{d}_{i})^{2} - \frac{1}{f} (r_{ui} - \frac{1}{2}) \mathbf{b}_{u}^{T} \mathbf{d}_{i} - 2\lambda_{D} \mathbf{y}_{i}^{T} \mathbf{d}_{i}$$

$$\underset{\mathbf{d}_{i} \in \{\pm 1\}}{\operatorname{arg\,min}} \hat{d}_{ik} d_{ik} \qquad \hat{d}_{ik} = \sum_{u \in \Omega_{i}} \frac{1}{f} (r_{ui} - \frac{1}{2} - \frac{1}{2f} \mathbf{b}_{u}^{T} \mathbf{d}_{i}) b_{uk} + \frac{1}{2f^{2}} d_{ik} + 2\lambda_{D} y_{ik}$$

W & V-subproblems: SGD + BP

X & Y-subproblems: SVD + Gram-Schmidt orthogonalization

Experiment

Datasets:

Datasets	Users	Items	Ratings	Rating Density	Followers	Followees	Links	Linking Density
CiaoDVD Epinions	17,615 40,163	16,121 139,738	72,665 664,824	$0.026\% \\ 0.012\%$	1,438 33,960	4,299 49,288	40,133 487,183	$0.649\% \\ 0.029\%$

- S2MF, DSR/DTMF > DCF: the effectiveness of social information to hash code learning
- S2MF > DSR/DTMF: the superiority of our solution to social information processing
- SMF > S2MF > MF > DSR/DTMF > DCF: the effectiveness of our proposed method

Results:

		CiaoDVD					Epinions				
Methods	Metric	8 Bits	16 Bits	32 Bits	64 Bits	8 Bits	16 Bits	32 Bits	64 Bits		
SMF	NDCG@10	0.82807	0.83035	0.82818	0.83171	0.84666	0.84680	0.84639	0.84801		
	Improve	-1.61%	-1.28%	-1.48%	-1.27%	-3.50%	-2.26%	-1.87%	-1.77%		
MF	NDCG@10	0.75201	0.76588	0.76055	0.76881	0.79658	0.80503	0.80629	0.80686		
IVIΓ	Improve	+8.34%	+7.03%	+7.28%	+6.81%	+2.57%	+2.81%	+3.01%	+3.24%		
DSR/DTMF	NDCG@10	0.74898	0.75168	0.75942	0.76142	0.78722	0.78880	0.79586	0.79665		
	Improve	+8.78%	+9.05%	+7.44%	+7.84%	+3.79%	+4.93%	+4.36%	+4.57%		
DCF	NDCG@10	0.72930	0.73269	0.74305	0.74921	0.77929	0.78257	0.78837	0.79123		
	Improve	+11.72%	+11.87%	+9.81%	+9.60%	+4.84%	+5.77%	+5.35%	+5.28%		
S2MF	NDCG@10	0.81475	0.81969	0.81595	0.82114	0.81702	0.82769	0.83053	0.83302		